

1

MYSTERY OF COMPUTERS?

Computers are a bit of a mystery to most people. It not like trying to

understand how the car engine works, as most things about inner

workings of the computer are “invisible”.

Our need for computers has a long history. Ancient civilizations too

invented special purpose computing devices from time to time, to

predict the motion of stars and for navigation. These included both

“analogue” and “digital” devices, dedicated to just one job that they

often did quite well. However, the concept of general-purpose

“programmable” computers is entirely new.

If you look at the books in your local library, you are left just as

mystified. They talk about logic gates, binary numbers, CPU,

memory, Windows, Unix etc., but fall short of explaining how it all

2

works. If you were given whatever you ask for (e.g. infinite supply

of logic gates, microprocessors, keyboards, screen etc), could you

put it all together to make a computer? Just as a collection of body

parts do not make a living creature, a computer is more than the

sum of its parts. Software may be the missing “soul”, but that too is

not enough. It’s the “organisation” that matters the most. As you

will soon see, the computer is a marvel of organisation.

Alan Turing (1912-1954) first proposed the concept when trying to

break the Enigma Code.

Fig 1 – The Turing Machine

3

Turing’s concept, Fig.1, is a theoretical device to manipulate

symbols on a strip of tape according to a table of rules. In modern

programmable computers, the tape is replaced by Memory (RAM

and the Hard Disk), table of rules by the ALU (Arithmetic Logic

Unit) and the Instruction Set, and orderly feeding of the tape by the

Programme Counter, Address Bus and other hardware.

To top it all, computers understand only 0s and 1s – fast they may

be, but morons nevertheless. Well organised morons!

Fig 2 shows the general arrangement of various parts of a computer.

When you turn on the computer, what happens? The average person

does not care too much about it, as long as the Windows logo and the

Desktop appears soon and a click on the Desktop loads and runs his

favourite programme.

4

Generally speaking, everything hangs between the Address Bus and

Data Bus. Two main thoroughfares, which carry all information.

As stated earlier, computers are actually a marvel of organisation.

Modern operating systems, like Windows, Unix, Apple OS and

Android are too large to fit the available memory and are stored

Fig. 2 – The Schematic

for a modern computer.

5

usually on the hard disk. By itself, the computer hardware can’t

perform complex tasks like reading the operating system from the

hard disk, and then run your favourite programme. All computers

have a small, important, programme stored in a ROM BIOS chip –

the Read Only Memory Basic Input Output System.

The BIOS “chip” is an integrated circuit, sometimes with a

transparent window through which you can actually see the
microchip. Most BIOS are actually very complex, but all have a

Loader programme, do a quick computer check up, look for the

graphics and sound cards, screen, mouse, printer and keyboard. The

Loader programme then reads the “Master Boot Record” on the

hard disk to discover the type of hard disk and how it has been

structured.

6

COMPUTERS UNDERSTAND 10 THINGS?

Yes, computers understand only two (binary 10) things, 0 and 1.

How can a block of 0s and 1s in the BIOS, Hard Disk, Memory

and elsewhere do anything at all?

All digital computers basically work in a similar manner.

Microprocessors have a built-in Instruction Set. Intel produced the

first most successful microprocessors – staring from the 4-bit 4004,

8-bit 8080 (1973), followed by more complex Pentiums and later

x86 versions in use today. Intel 8080 is still “source code

compatible” with modern x86 family of microprocessors used in

PCs. Intel microprocessors have “Complex Instruction Set

(CISC)” as opposed to “Reduced Instruction Set (RISC)”

microprocessors widely used in mobile phones and tablet computers.

We will not discuss the merits of CISC vs. RISC here, however they

7

all work in a similar manner and everything hangs between the

Address Bus and Data Bus as mentioned earlier.

To understand it, we will now look at a small programme, written in

“Machine Code” (i.e 0s and 1s) for the Intel 8080 microprocessor.

Memory Code Hex Mne

0000 1101 1011 DB IN

0001 0000 0111 07

0002 0011 0010 32 STA

0003 1111 0000 F0

0004 0000 0000 01

0005 0111 0110 76 HLT

Fig 3 - Block of 0s and 1s

are organised in groups of 8

“bits”, called a “byte”, and

use the “hexadecimal”

notation. The computer

performs all operations in a

“Step-by-Step” fashion.

Each step is called a

“Machine Cycle”,

8

controlled by accurate internal clock(s) that tick away at millions of

times every second.

At the start, the Address Bus points to the first memory location

0000 (in this case). During the first machine cycle, the computer

reads the first row (1101 1011) from memory location 0000.

Whatever it finds there is regarded as an instruction, called the Op

Code. This group of 0s and 1s translates as the “Input Read” or IN

instruction. The computer then asks for Input Port number – input

ports are usually configured as memory locations. It finds this

information by reading the next memory location (0002), reads 0000

0111 (hex 07) as the Input Port Number. It has taken two machine

cycles so far. In the next cycle, it sends 0000 0111 to the Address

Bus as the Input Port address and “enables” it for a short time to

“read” the data. The Input Port could be a block of switches, output

of an analogue-to-digital converter or something else. The data then

9

appears on the Data Bus and goes straight into the (first)

Accumulator. The computer so far has read just two memory

locations and has taken three Machine Cycles. The actual sequence

of operations, of course, depends on the microprocessor used. Some

microprocessors have several accumulators, wider Address and

Data Bus, Index Pointers and Multi-phase Clocks requiring more

machine cycles to execute instructions.

Having completed the first instruction, the Address Bus then points

to the memory location 0003 to read the next Op Code, and so on.

The Op Code in memory location 0003 is 0011 0010 (hex 32),

which translates to “Store Accumulator to Memory (STA)”. As

this microprocessor uses a 16-bit Address Bus, it reads the next two

bytes in memory locations 0004 and 0005 as 1111 0000 (hex F0) and

0000 0001 (hex 01). These combine to form the 16-bit memory

address 1111 0000 0000 0001 (hex F001). To store the data in this

10

memory location, the computer then sends F001 (hex) to the

Address Bus in the next memory cycle and applies a momentary

“Write Memory” control signal to memory to write the data at the

selected address (F001). This instruction has taken a total of four

machine cycles, three to read and one more to execute. The contents

of the Accumulator are not destroyed in the Store Accumulator to
Memory (STA) instruction and can still be used for other purposes.

It then reverts to reading the memory, at location 0005 for the next

instruction, 0111 0110 (hex 76). This is the HLT (Halt) instruction

and it halts as soon as the instruction is read (one machine cycle).

So, the 8080 microprocessor requires 1 to 4 machine cycles in this

example, however there are more complex instructions. Here is the

list of step-by-step machine cycles to run the programme:

11

Cyl No.Data Bus Add Bus Description

1 1101 1101 0000 0000 Read Op Code (hex DB IN)

2 0000 0111 0000 0001 Read Input Port No (hex 07)

3 Input Data 0000 0111 Input Read, data on Port 7

4 0010 0010 0000 0010 Read Op Code (hex 32 STA)

5 1111 0001 0000 0011 Hi Memory Add (hex F1)

6 0000 0000 0000 0010 Lo Memory Add (hex 01)

7 Data read F1 00 (hex) Write data to memory

8 0111 0110 0000 0101 Read OP Code Execute HLT

The number of machine cycles required to read and perform the

instruction depends on the operation required.

12

IT’S ALL TOO COMPLICATED?

If you want to understand how computers “really” work, it is best to

start with 8-bit microprocessors. You can easily “breadboard” or

build an 8-bit microcomputer yourself using the “asynchronous”

Intel 8080 (8085 or Z80) microprocessor. Alternatively, use ready-

to-use trainers such as the Microtutor MPT8080K-1 for learning.

,

Fig.4 – Limrose Microtutor

MPT8080.- It has numerous

LEDs on the front panel to

show what is happening on

the Data and Address bus,

Input and Output Ports and

control signals.

13

You can “see” the operations described on the proceeding pages,

using LEDs on Address, Data and Control buses if the

microprocessor is run in the “Single Cycle mode”.

You can also “simulate” the operation of a simple computer on a

Windows PC (WinXP and later) and observe “Step-by-Step”

operation. The “beta” version of the Limrose Small Computer

simulator (LSC) is due to be released in Jan 2015 and a full version a

bit later. None of this is as complicated as it sounds and can be great

fun. You will actually learn a lot more about computers if you

build your own on a breadboard.

LSC Simulator can be downloaded from www.limrosegroup.com

(Jan 2015 onwards) or contact Limrose for a free copy on a CD.

14

SO, WHERE DO WE GO FROM HERE?

As computers understand only 0s and 1s, the very first programmes

must be written using just 0s and 1s. No Python or Visual Basic

as yet. Programming using the machine code, at the basic level of 0s

and 1s, is not for everyone but is a must if you wish to become a

computer designer of tomorrow?

Although all microprocessors have the necessary logic, they require

some software to kick start it. The BIOS chip does this job for PCs.

The BIOS (or micro-programme) is automatically run when the

computer is powered. Some support chips used with microprocessors

too are “programmable” and the first few lines in BIOS are often

used to programme such chips (e.g. USART or USB chip), before

loading the remaining system.

15

ASSEMBLER AND THE “C” LANGUAGE

All microprocessors offer an “Assembler” and the “C”

programming language. Assembler is the closest you can get to

“machine code” programming. Thus, the Assembler code for the

example in Fig.3 would look like:

IN 07

STA F1, 01

HLT

Assembler is a lot easier to use. The next language, “C”, comes in

various broadly similar versions and runs on most operating

systems. However, C too is difficult for beginners.

16

PYTHON – CODING FOR ALL?

Python is a good first programming language. It can be a great

experience on Day 1. As Python is an interpreter, you can type:

>>> print (“Hello World”) and press the Enter key.

You will immediately print

Hello World on the printer connected to your computer.

>>>

Inexpensive computers like Raspberry Pi (which runs on Linux, and

comes pre-installed with Python) have re-vitalised Python. Django

is a rapid development web framework for Python professionals.

Google Maps and Windows Live are probably written in Python.

But, coding for all using Python is probably a bridge too far?

17

JAVA – REAL WORLD PROGRAMMING

We are now entering the complex world of “real” programming and

you will come across concepts such as Object Oriented, Class and

Inheritance. Here is the Java programme to print “Hello World”:

/* comment - Hello World Applet in Java

public class HelloWorld {

 public static void main (string [] args) {

 system.out.println (“Hello World”);

 }

}

More complicated than Python. Note the use of brackets, lower

case coding and semi-colon in Java. Java is more difficult to learn

and reputed to be embarrassingly slow!

18

PROGRAMMING LANGUAGE FOR YOU?

Actually, there are too many programming languages. “C” is

practically a “universal” programming language and runs on PCs,

Unix, Android, Apple, Mobile Phones and Tablets. But, you have

to grapple with memory management, internal pointers and so

many other things yourself. Can you cope with all that?

Java too is a very important language (coding looks similar to C),

and is the main language for the Android operating system. It is

perhaps appropriate to mention at this stage that Java and

JavaScript are two different things – Java is a fully developed

programming language to create “stand alone” applications.

JavaScript is used within web browser’s HTML code, interpreted

line by line, and cannot produce stand-alone applications.

19

Beginners should avoid C and Java – too difficult to master.

Another programming language, created by two former Apple

engineers especially for kids, called SIMPLE for Windows, is worth

a look. You can download it free from www.simplecodeworks.com.

SIMPLE is easy to learn as it uses only 23 keywords, but you can

still write some interesting games for Windows and the Internet.

However, if you are serious about programming, sooner or later you

will learn a “professional” language like Visual Basic, Ruby,

HTML, PHP or Java. TIOBE index for programming languages

(www.tiobe.com) lists Visual Basic (VB6 and VB.Net) quite high

up. Some say that VB is more than just a programming language; it

includes the complete architecture for integrating programming

with the Windows Operating System. Visual Basic is probably still

the language loved by the largest block of developers in the world.

20

VISUAL BASIC (Visual Studio)

Visual Basic (part of Microsoft’s Visual Studio) is both simple and

complex at the same time, which explains its meteoric rise as one of

the most popular programming language. It is simple to get started,

yet is comprehensive enough to handle large projects and the Web.

Visual Basic Express 2012 (free download) has everything you need

for Windows Desktop GUI Applications. However, if your

computer is old (WinXP etc), you may have to use VB Express

2008, VB Express 2005 or even older VB6. VB6 still has a large

installed base and millions of devoted followers.

The example that follows uses VB Express 2012, and other versions

may work a bit differently. Start VB by clicking the Desktop icon.

Then, New Project and Windows Form Application. After starting

the project, you should see a (blank) Form, Fig.5.

21

Visual Basic is “Event Driven”. Events usually occur by, but not

limited to, user inputs – such as clicking a button. The blank

opening screen has to be first loaded with “Controls”, such as

buttons and textboxes using the Toolbox menu. Then, insert the

necessary code for their “click” events. To add a Button, drag the

Button control from the toolbox onto the Form and draw it on the

Fig 5 - Visual Basic,

Development

Environment (IDE).

To view the Toolbox,

click the VIEW menu

bar and select

Toolbox. You can

“dock” the toolbox to

left of Form1.

22

Form. Relocate and size to suit. In the Properties window on the

right, alter the (Name) of the button as cmdPRINT and Text as

PRINT. Similarly, add the EXIT button and (Name) it is as

cmdEXIT. To add the code, click anywhere on the Form and go to

Form1.Events window (ignoring code for Form1_Load event) :

Public Class Form1

 ………
Private Sub cmdPRINT_Click()
 Messagebox.show (“Hello World”)
End Sub

Private Sub cmdEXIT_Click()
 END
End Sub

End Class

23

Add code for cmdPRINT and cmdEXIT buttons between Private

Sub and End Sub (as shown in blue above) to print Hello World in

a MessageBox. Sending it to a printer requires a bit more coding.

To run the programme, press Function Key [F5]. Every time you

click the PRINT button, the computer will print Hello World in the

MessageBox. Clicking on the EXIT button would stop the

programme. Excellent tutorials are available on the Internet for all

versions of Visual Basic and other programming languages.

Some VB-based programmes can be very large indeed. Limrose’s

VProgen4GL/Agile System has over 400,000 lines of code. It

automatically “generates” robust solutions for business

applications (Manufacturing, Libraries, Care Homes etc.) without

writing any application code. The same “VProgen4GL engine”

manages all applications without any coding. No coding!!

24

.

Can’t imagine writing 400,000 lines of Desktop code in Python,

or Java? Contact Limrose (Tel. 01978 855555 or limrose@aol.com)

for a free copy of Trial CD for VProgen4GL to see how you can

develop complex business applications without writing code at all.

Fig. 6 – Opening screen for

Vprogen4GL, showing

multiple objects and buttons,

textboxes etc. The “arrows”

too are “clickable” objects.

The entire code, with minor

exceptions, has been written

in Visual Basic.

